Other Copulas
A few copulas, while necessary in certain cases and really useful, are hard to classify. We gather them here for simplicity.
PlackettCopula
Copulas.PlackettCopula
— TypePlackettCopula{P}
Fields: - θ::Real - parameter
Constructor
PlackettCopula(θ)
Parameterized by $\theta > 0$ The Plackett copula is
\[C_{\theta}(u,v) = \frac{\left [1+(\theta-1)(u+v)\right]- \sqrt{[1+(\theta-1)(u+v)]^2-4uv\theta(\theta-1)}}{2(\theta-1)}\]
and for $\theta = 1$
\[C_{1}(u,v) = uv \]
It has a few special cases:
- When θ = 0, is is the MCopula (Upper Frechet-Hoeffding bound)
- When θ = 1, it is the IndependentCopula
- When θ = ∞, is is the WCopula (Lower Frechet-Hoeffding bound)
References:
- [4] Joe, H. (2014). Dependence modeling with copulas. CRC press, Page.164
- [63] Johnson, Mark E. Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. Vol. 192. John Wiley & Sons, 1987. Page 193.
- [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006. Exercise 3.38.
FGMCopula
Farlie-Gumbel-Morgenstern (FGM) copula
Copulas.FGMCopula
— TypeFGMCopula{d,T}
Fields:
- θ::Real - parameter
Constructor
FGMCopula(d, θ)
The Multivariate Farlie-Gumbel-Morgenstern (FGM) copula of dimension d has $2^d-d-1$ parameters $\theta$ and function
\[C(\boldsymbol{u})=\prod_{i=1}^{d}u_i \left[1+ \sum_{k=2}^{d}\sum_{1 \leq j_1 < \cdots < j_k \leq d} \theta_{j_1 \cdots j_k} \bar{u}_{j_1}\cdots \bar{u}_{j_k} \right],\]
where $\bar{u}=1-u$.
It has a few special cases:
- When d=2 and θ = 0, it is the IndependentCopula.
More details about Farlie-Gumbel-Morgenstern (FGM) copula are found in [3]. We use the stochastic representation from [64] to obtain random samples.
References:
RafteryCopula
Copulas.RafteryCopula
— TypeRafteryCopula{d, P}
Fields: - θ::Real - parameter
Constructor
RafteryCopula(d, θ)
The Multivariate Raftery Copula of dimension d is parameterized by $\theta \in [0,1]$
\[C_{\theta}(\mathbf{u}) = u_{(1)} + \frac{(1 - \theta)(1 - d)}{1 - \theta - d} \left(\prod_{j=1}^{d} u_j\right)^{\frac{1}{1-\theta}} - \sum_{i=2}^{d} \frac{\theta(1-\theta)}{(1-\theta-i)(2-\theta-i)} \left(\prod_{j=1}^{i-1}u_{(j)}\right)^{\frac{1}{1-\theta}}u_{(i)}^{\frac{2-\theta-i}{1-\theta}}\]
where $u_{(1)}, \ldots , u_{(d)}$ denote the order statistics of $u_1, \ldots ,u_d$. More details about Multivariate Raftery Copula are found in the references below.
It has a few special cases:
- When θ = 0, it is the IndependentCopula.
- When θ = 1, it is the the Fréchet upper bound
References:
- [3]
- R. B. Nelsen. An Introduction to Copulas. 2nd ed Edition, Springer Series in Statistics (Springer, New York, 2006).
- [4]
- H. Joe. Dependence Modeling with Copulas (CRC press, 2014).
- [63]
- M. E. Johnson. Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. Vol. 192 (John Wiley & Sons, 1987).
- [64]
- C. Blier-Wong, H. Cossette and E. Marceau. Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis 173, 107506 (2022).
- [65]
- T. Saali, M. Mesfioui and A. Shabri. Multivariate extension of Raftery copula. Mathematics 11, 414 (2023).