- [1]
H. Joe. Multivariate Models and Multivariate Dependence Concepts (CRC press, 1997).
- [2]
U. Cherubini, E. Luciano and W. Vecchiato. Copula Methods in Finance (John Wiley & Sons, 2004).
- [3]
R. B. Nelsen. An Introduction to Copulas. 2nd ed Edition, Springer Series in Statistics (Springer, New York, 2006).
- [4]
H. Joe. Dependence Modeling with Copulas (CRC press, 2014).
- [5]
J.-F. Mai, M. Scherer and C. Czado. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. 2nd edition Edition, Vol. 6 of Series in Quantitative Finance (World Scientific, New Jersey, 2017).
- [6]
F. Durante and C. Sempi. Principles of Copula Theory (Chapman and Hall/CRC, 2015).
- [7]
C. Czado. Analyzing Dependent Data with Vine Copulas: A Practical Guide With R. Vol. 222 of Lecture Notes in Statistics (Springer International Publishing, Cham, 2019).
- [8]
J. Größer and O. Okhrin. Copulae: An Overview and Recent Developments. WIREs Computational Statistics (2021).
- [9]
A. Sklar. Fonctions de Repartition à n Dimension et Leurs Marges. Université Paris 8, 1–3 (1959).
- [10]
T. Lux and A. Papapantoleon.
Improved Fréchet-Hoeffding Bounds on $d$-Copulas and Applications in Model-Free Finance, arXiv:1602.08894
math, q-fin.
- [11]
R. Kaas, J. Dhaene, D. Vyncke, M. J. Goovaerts and M. Denuit. A Simple Geometric Proof That Comonotonic Risks Have the Convex-Largest Sum. ASTIN Bulletin: The Journal of the IAA 32, 71–80 (2002).
- [12]
L. Hua and H. Joe. Multivariate Dependence Modeling Based on Comonotonic Factors. Journal of Multivariate Analysis 155, 317–333 (2017).
- [13]
G. Frahm, M. Junker and A. Szimayer. Elliptical Copulas: Applicability and Limitations. Statistics & Probability Letters 63, 275–286 (2003).
- [14]
E. Gómez, M. A. Gómez-villegas and J. M. Marín. A Survey on Continuous Elliptical Vector Distributions. Revista Matemática Complutense 16, 345–361 (2003).
- [15]
M.-P. Côté and C. Genest. Dependence in a Background Risk Model. Journal of Multivariate Analysis 172, 28–46 (2019).
- [16]
G. Elidan. Copulas in Machine Learning. In: Copulae in Mathematical and Quantitative Finance, Vol. 213, edited by P. Jaworski, F. Durante and W. K. Härdle (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013); pp. 39–60.
- [17]
J. Friedman, T. Hastie and R. Tibshirani. Applications of the Lasso and Grouped Lasso to the Estimation of Sparse Graphical Models (Technical report, Stanford University, 2010).
- [18]
D. Müller and C. Czado. Dependence Modelling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso. Computational Statistics & Data Analysis 137, 211–232 (2019).
- [19]
A. Derumigny and J.-D. Fermanian. Identifiability and Estimation of Meta-Elliptical Copula Generators. Journal of Multivariate Analysis, 104962 (2022).
- [20]
A. J. McNeil and J. Nešlehová. Multivariate Archimedean Copulas, d -Monotone Functions and L1 -Norm Symmetric Distributions. The Annals of Statistics 37, 3059–3097 (2009).
- [21]
R. E. Williamson. On multiply monotone functions and their laplace transforms (Mathematics Division, Office of Scientific Research, US Air Force, 1955).
- [22]
A. J. McNeil. Sampling Nested Archimedean Copulas. Journal of Statistical Computation and Simulation 78, 567–581 (2008).
- [23]
M. Hofert, M. Mächler and A. J. McNeil. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la Société Française de Statistique 154, 25–63 (2013).
- [24]
M. Hofert. Sampling Nested Archimedean Copulas with Applications to CDO Pricing. Ph.D. Thesis, Universität Ulm (2010).
- [25]
M. Hofert and D. Pham. Densities of Nested Archimedean Copulas. Journal of Multivariate Analysis 118, 37–52 (2013).
- [26]
A. J. McNeil and J. Nešlehová. From Archimedean to Liouville Copulas. Journal of Multivariate Analysis 101, 1772–1790 (2010).
- [27]
H. Cossette, S.-P. Gadoury, E. Marceau and I. Mtalai. Hierarchical Archimedean Copulas through Multivariate Compound Distributions. Insurance: Mathematics and Economics 76, 1–13 (2017).
- [28]
H. Cossette, E. Marceau, I. Mtalai and D. Veilleux. Dependent Risk Models with Archimedean Copulas: A Computational Strategy Based on Common Mixtures and Applications. Insurance: Mathematics and Economics 78, 53–71 (2018).
- [29]
C. Genest, J. Nešlehová and J. Ziegel. Inference in Multivariate Archimedean Copula Models. TEST 20, 223–256 (2011).
- [30]
E. Di Bernardino and D. Rulliere. On Certain Transformations of Archimedean Copulas: Application to the Non-Parametric Estimation of Their Generators. Dependence Modeling 1, 1–36 (2013).
- [31]
E. Di Bernardino and D. Rullière. On an Asymmetric Extension of Multivariate Archimedean Copulas Based on Quadratic Form. Dependence Modeling 4 (2016).
- [32]
K. Cooray. Strictly Archimedean Copulas with Complete Association for Multivariate Dependence Based on the Clayton Family. Dependence Modeling 6, 1–18 (2018).
- [33]
J. Spreeuw. Archimedean Copulas Derived from Utility Functions. Insurance: Mathematics and Economics 59, 235–242 (2014).
- [34]
G. Gudendorf and J. Segers. Extreme-value copulas. In: Copula Theory and Its Applications: Proceedings of the Workshop Held in Warsaw, 25-26 September 2009 (Springer, 2010); pp. 127–145.
- [35]
K. Ghoudi, A. Khoudraji and E. L.-P. Rivest. Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Canadian Journal of Statistics 26, 187–197 (1998).
- [36]
P. Deheuvels. On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statistics & Probability Letters 12, 429–439 (1991).
- [37]
J.-F. Mai and M. Scherer. Financial engineering with copulas explained (Springer, 2014).
- [38]
P. Deheuvels. La Fonction de Dépendance Empirique et Ses Propriétés. Académie Royale de Belgique. Bulletin de la Classe des Sciences 65, 274–292 (1979).
- [39]
J. Segers, M. Sibuya and H. Tsukahara. The Empirical Beta Copula. Journal of Multivariate Analysis 155, 35–51 (2017).
- [40]
A. Cuberos, E. Masiello and V. Maume-Deschamps. Copulas Checker-Type Approximations: Application to Quantiles Estimation of Sums of Dependent Random Variables. Communications in Statistics - Theory and Methods, 1–19 (2019).
- [41]
P. Mikusiński and M. D. Taylor. Some Approximations of N-Copulas. Metrika 72, 385–414 (2010).
- [42]
F. Durante, E. Foscolo, J. A. Rodríguez-Lallena and M. Úbeda-Flores. A Method for Constructing Higher-Dimensional Copulas. Statistics 46, 387–404 (2012).
- [43]
F. Durante, J. Fernández Sánchez and C. Sempi. Multivariate Patchwork Copulas: A Unified Approach with Applications to Partial Comonotonicity. Insurance: Mathematics and Economics 53, 897–905 (2013).
- [44]
F. Durante, J. Fernández-Sánchez, J. J. Quesada-Molina and M. Úbeda-Flores. Convergence Results for Patchwork Copulas. European Journal of Operational Research 247, 525–531 (2015).
- [45]
O. Laverny. Empirical and Non-Parametric Copula Models with the Cort R Package. Journal of Open Source Software 5, 2653 (2020).
- [46]
F. Durante, G. Puccetti, M. Scherer and S. Vanduffel. The Vine Philosopher. Dependence Modeling 5, 256–267 (2017).
- [47]
T. Nagler and C. Czado. Evading the Curse of Dimensionality in Nonparametric Density Estimation with Simplified Vine Copulas. Journal of Multivariate Analysis 151, 69–89 (2016).
- [48]
T. Nagler. Nonparametric Estimation in Simplified Vine Copula Models. Ph.D. Thesis, Technische Universität München (2018).
- [49]
C. Czado, S. Jeske and M. Hofmann. Selection Strategies for Regular Vine Copulae. Journal de la Société Française de Statistique 154, 174–191 (2013).
- [50]
B. Gräler. Modelling Skewed Spatial Random Fields through the Spatial Vine Copula. Spatial Statistics 10, 87–102 (2014).
- [51]
C. Genest, J. Nešlehová and N. Ben Ghorbal. Estimators Based on Kendall's Tau in Multivariate Copula Models. Australian & New Zealand Journal of Statistics 53, 157–177 (2011).
- [52]
G. A. Fredricks and R. B. Nelsen. On the Relationship between Spearman's Rho and Kendall's Tau for Pairs of Continuous Random Variables. Journal of Statistical Planning and Inference 137, 2143–2150 (2007).
- [53]
A. Derumigny and J.-D. Fermanian. À propos des tests de l'hypothèse simplificatrice pour les copules conditionnelles. JDS2017, 6 (2017).
- [54]
H.-B. Fang, K.-T. Fang and S. Kotz. The meta-elliptical distributions with given marginals. Journal of multivariate analysis 82, 1–16 (2002).
- [55]
F. Lindskog, A. McNeil and U. Schmock. Kendall’s tau for elliptical distributions. In: Credit risk: Measurement, evaluation and management (Springer, 2003); pp. 149–156.
- [56]
H. Joe. Families of min-stable multivariate exponential and multivariate extreme value distributions. Statistics & probability letters 9, 75–81 (1990).
- [57]
J. A. Tawn. Bivariate extreme value theory: models and estimation. Biometrika 75, 397–415 (1988).
- [58]
J.-F. Mai and M. Scherer. Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes 14, 311–324 (2011).
- [59]
J.-F. Mai and M. Scherer. Simulating copulas: stochastic models, sampling algorithms, and applications. Vol. 4 (World Scientific, 2012).
- [60]
J. Galambos. Order statistics of samples from multivariate distributions. Journal of the American Statistical Association 70, 674–680 (1975).
- [61]
J. Hüsler and R.-D. Reiss. Maxima of normal random vectors: between independence and complete dependence. Statistics & Probability Letters 7, 283–286 (1989).
- [62]
A. K. Nikoloulopoulos, H. Joe and H. Li. Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009).
- [63]
M. E. Johnson. Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. Vol. 192 (John Wiley & Sons, 1987).
- [64]
C. Blier-Wong, H. Cossette and E. Marceau. Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis 173, 107506 (2022).
- [65]
T. Saali, M. Mesfioui and A. Shabri. Multivariate extension of Raftery copula. Mathematics 11, 414 (2023).