Archimedean Generators

WilliamsonGenerator

Copulas.WilliamsonGeneratorType
WilliamsonGenerator{TX}
i𝒲{TX}

Fields:

  • X::TX – a random variable that represents its Williamson d-transform
  • d::Int – the dimension of the transformation.

Constructor

WilliamsonGenerator(X::Distributions.UnivariateDistribution, d)
i𝒲(X::Distributions.UnivariateDistribution,d)

The WilliamsonGenerator (alias i𝒲) allows to construct a d-monotonous archimedean generator from a positive random variable X::Distributions.UnivariateDistribution. The transformation, which is called the inverse Williamson transformation, is implemented in WilliamsonTransforms.jl.

For a univariate non-negative random variable $X$, with cumulative distribution function $F$ and an integer $d\ge 2$, the Williamson-d-transform of $X$ is the real function supported on $[0,\infty[$ given by:

\[\phi(t) = 𝒲_{d}(X)(t) = \int_{t}^{\infty} \left(1 - \frac{t}{x}\right)^{d-1} dF(x) = \mathbb E\left( (1 - \frac{t}{X})^{d-1}_+\right) \mathbb 1_{t > 0} + \left(1 - F(0)\right)\mathbb 1_{t <0}\]

This function has several properties:

  • We have that $\phi(0) = 1$ and $\phi(Inf) = 0$
  • $\phi$ is $d-2$ times derivable, and the signs of its derivatives alternates : $\forall k \in 0,...,d-2, (-1)^k \phi^{(k)} \ge 0$.
  • $\phi^{(d-2)}$ is convex.

These properties makes this function what is called a d-monotone archimedean generator, able to generate archimedean copulas in dimensions up to $d$. Our implementation provides this through the Generator interface: the function $\phi$ can be accessed by

G = WilliamsonGenerator(X, d)
ϕ(G,t)

Note that you'll always have:

max_monotony(WilliamsonGenerator(X,d)) === d

References:

  • [21] Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23 189–207. MR0077581
  • [20] McNeil, Alexander J., and Johanna Nešlehová. "Multivariate Archimedean copulas, d-monotone functions and ℓ 1-norm symmetric distributions." (2009): 3059-3097.
source

IndependentGenerator

Copulas.IndependentGeneratorType
IndependentGenerator

Constructor

IndependentGenerator()
IndependentCopula(d)

The Independent Copula in dimension $d$ is the simplest copula, that has the form :

\[C(\mathbf{x}) = \prod_{i=1}^d x_i.\]

It happends to be an Archimedean Copula, with generator :

\[\phi(t) = \exp{-t}\]

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

MGenerator

Copulas.MGeneratorType
MGenerator

Constructor

MGenerator()
MCopula(d)

The Upper Frechet-Hoeffding bound is the copula with the greatest value among all copulas. It correspond to comonotone random vectors.

For any copula $C$, if $W$ and $M$ are (respectively) the lower and uppder Frechet-Hoeffding bounds, we have that for all $\mathbf{u} \in [0,1]^d$,

\[W(\mathbf{u}) \le C(\mathbf{u}) \le M(\mathbf{u})\]

The two Frechet-Hoeffding bounds are also Archimedean copulas.

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

WGenerator

Copulas.WGeneratorType
WGenerator

Constructor

WGenerator()
WCopula(d)

The Lower Frechet-Hoeffding bound is the copula with the lowest value among all copulas. Note that $W$ is only a proper copula when $d=2$, in greater dimensions it is still the (pointwise) lower bound, but not a copula anymore. For any copula $C$, if $W$ and $M$ are (respectively) the lower and uppder Frechet-Hoeffding bounds, we have that for all $\mathbf{u} \in [0,1]^d$,

\[W(\mathbf{u}) \le C(\mathbf{u}) \le M(\mathbf{u})\]

The two Frechet-Hoeffding bounds are also Archimedean copulas.

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

ClaytonGenerator

Copulas.ClaytonGeneratorType
ClaytonGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

ClaytonGenerator(θ)
ClaytonCopula(d,θ)

The Clayton copula in dimension $d$ is parameterized by $\theta \in [-1/(d-1),\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = \left(1+\mathrm{sign}(\theta)*t\right)^{-1\frac{1}{\theta}}\]

It has a few special cases:

  • When θ = -1/(d-1), it is the WCopula (Lower Frechet-Hoeffding bound)
  • When θ = 0, it is the IndependentCopula
  • When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

FrankGenerator

Copulas.FrankGeneratorType
FrankGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

FrankGenerator(θ)
FrankCopula(d,θ)

The Frank copula in dimension $d$ is parameterized by $\theta \in [-\infty,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = -\frac{\log\left(1+e^{-t}(e^{-\theta-1})\right)}{ heta}\]

It has a few special cases:

  • When θ = -∞, it is the WCopula (Lower Frechet-Hoeffding bound)
  • When θ = 1, it is the IndependentCopula
  • When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

GumbelGenerator

Copulas.GumbelGeneratorType
GumbelGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

GumbelGenerator(θ)
GumbelCopula(d,θ)

The Gumbel copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = \exp{-t^{\frac{1}{θ}}}\]

It has a few special cases:

  • When θ = 1, it is the IndependentCopula
  • When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

AMHGenerator

Copulas.AMHGeneratorType
AMHGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

AMHGenerator(θ)
AMHCopula(d,θ)

The AMH copula in dimension $d$ is parameterized by $\theta \in [-1,1)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \frac{1-\theta}{e^{-t}-\theta}\]

It has a few special cases:

  • When θ = 0, it is the IndependentCopula

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

JoeGenerator

Copulas.JoeGeneratorType
JoeGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

JoeGenerator(θ)
JoeCopula(d,θ)

The Joe copula in dimension $d$ is parameterized by $\theta \in [1,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = 1 - \left(1 - e^{-t}\right)^{\frac{1}{\theta}}\]

It has a few special cases:

  • When θ = 1, it is the IndependentCopula
  • When θ = ∞, is is the MCopula (Upper Frechet-Hoeffding bound)

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

GumbelBarnettGenerator

Copulas.GumbelBarnettGeneratorType
GumbelBarnettGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

GumbelBarnettGenerator(θ)
GumbelBarnettCopula(d,θ)

The Gumbel-Barnett copula is an archimdean copula with generator:

\[\phi(t) = \exp{θ^{-1}(1-e^{t})}, 0 \leq \theta \leq 1.\]

It has a few special cases:

  • When θ = 0, it is the IndependentCopula

References:

  • [4] Joe, H. (2014). Dependence modeling with copulas. CRC press, Page.437
  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source

InvGaussianGenerator

Copulas.InvGaussianGeneratorType
InvGaussianGenerator{T}

Fields:

  • θ::Real - parameter

Constructor

InvGaussianGenerator(θ)
InvGaussianCopula(d,θ)

The Inverse Gaussian copula in dimension $d$ is parameterized by $\theta \in [0,\infty)$. It is an Archimedean copula with generator :

\[\phi(t) = \exp{\frac{1-\sqrt{1+2θ^{2}t}}{θ}}.\]

More details about Inverse Gaussian Archimedean copula are found in :

Mai, Jan-Frederik, and Matthias Scherer. Simulating copulas: stochastic models, sampling algorithms, and applications. Vol. 6. # N/A, 2017. Page 74.

It has a few special cases:

  • When θ = 0, it is the IndependentCopula

References:

  • [3] Nelsen, Roger B. An introduction to copulas. Springer, 2006.
source
[3]
R. B. Nelsen. An Introduction to Copulas. 2nd ed Edition, Springer Series in Statistics (Springer, New York, 2006).
[4]
H. Joe. Dependence Modeling with Copulas (CRC press, 2014).
[20]
A. J. McNeil and J. Nešlehová. Multivariate Archimedean Copulas, d -Monotone Functions and L1 -Norm Symmetric Distributions. The Annals of Statistics 37, 3059–3097 (2009).
[21]
R. E. Williamson. On multiply monotone functions and their laplace transforms (Mathematics Division, Office of Scientific Research, US Air Force, 1955).