References

[1]
H. Joe. Multivariate Models and Multivariate Dependence Concepts (CRC press, 1997).
[2]
U. Cherubini, E. Luciano and W. Vecchiato. Copula Methods in Finance (John Wiley & Sons, 2004).
[3]
R. B. Nelsen. An Introduction to Copulas. 2nd ed Edition, Springer Series in Statistics (Springer, New York, 2006).
[4]
H. Joe. Dependence Modeling with Copulas (CRC press, 2014).
[5]
J.-F. Mai, M. Scherer and C. Czado. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. 2nd edition Edition, Vol. 6 of Series in Quantitative Finance (World Scientific, New Jersey, 2017).
[6]
F. Durante and C. Sempi. Principles of Copula Theory (Chapman and Hall/CRC, 2015).
[7]
C. Czado. Analyzing Dependent Data with Vine Copulas: A Practical Guide With R. Vol. 222 of Lecture Notes in Statistics (Springer International Publishing, Cham, 2019).
[8]
J. Größer and O. Okhrin. Copulae: An Overview and Recent Developments. WIREs Computational Statistics (2021).
[9]
A. Sklar. Fonctions de Repartition à n Dimension et Leurs Marges. Université Paris 8, 1–3 (1959).
[10]
T. Lux and A. Papapantoleon. Improved Fréchet-Hoeffding Bounds on $d$-Copulas and Applications in Model-Free Finance, arXiv:1602.08894 math, q-fin.
[11]
R. Kaas, J. Dhaene, D. Vyncke, M. J. Goovaerts and M. Denuit. A Simple Geometric Proof That Comonotonic Risks Have the Convex-Largest Sum. ASTIN Bulletin: The Journal of the IAA 32, 71–80 (2002).
[12]
L. Hua and H. Joe. Multivariate Dependence Modeling Based on Comonotonic Factors. Journal of Multivariate Analysis 155, 317–333 (2017).
[13]
G. Frahm, M. Junker and A. Szimayer. Elliptical Copulas: Applicability and Limitations. Statistics & Probability Letters 63, 275–286 (2003).
[14]
E. Gómez, M. A. Gómez-villegas and J. M. Marín. A Survey on Continuous Elliptical Vector Distributions. Revista Matemática Complutense 16, 345–361 (2003).
[15]
M.-P. Côté and C. Genest. Dependence in a Background Risk Model. Journal of Multivariate Analysis 172, 28–46 (2019).
[16]
G. Elidan. Copulas in Machine Learning. In: Copulae in Mathematical and Quantitative Finance, Vol. 213, edited by P. Jaworski, F. Durante and W. K. Härdle (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013); pp. 39–60.
[17]
J. Friedman, T. Hastie and R. Tibshirani. Applications of the Lasso and Grouped Lasso to the Estimation of Sparse Graphical Models (Technical report, Stanford University, 2010).
[18]
D. Müller and C. Czado. Dependence Modelling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso. Computational Statistics & Data Analysis 137, 211–232 (2019).
[19]
A. Derumigny and J.-D. Fermanian. Identifiability and Estimation of Meta-Elliptical Copula Generators. Journal of Multivariate Analysis, 104962 (2022).
[20]
A. J. McNeil and J. Nešlehová. Multivariate Archimedean Copulas, d -Monotone Functions and L1 -Norm Symmetric Distributions. The Annals of Statistics 37, 3059–3097 (2009).
[21]
R. E. Williamson. On multiply monotone functions and their laplace transforms (Mathematics Division, Office of Scientific Research, US Air Force, 1955).
[22]
A. J. McNeil. Sampling Nested Archimedean Copulas. Journal of Statistical Computation and Simulation 78, 567–581 (2008).
[23]
M. Hofert, M. Mächler and A. J. McNeil. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la Société Française de Statistique 154, 25–63 (2013).
[24]
M. Hofert. Sampling Nested Archimedean Copulas with Applications to CDO Pricing. Ph.D. Thesis, Universität Ulm (2010).
[25]
M. Hofert and D. Pham. Densities of Nested Archimedean Copulas. Journal of Multivariate Analysis 118, 37–52 (2013).
[26]
A. J. McNeil and J. Nešlehová. From Archimedean to Liouville Copulas. Journal of Multivariate Analysis 101, 1772–1790 (2010).
[27]
H. Cossette, S.-P. Gadoury, E. Marceau and I. Mtalai. Hierarchical Archimedean Copulas through Multivariate Compound Distributions. Insurance: Mathematics and Economics 76, 1–13 (2017).
[28]
H. Cossette, E. Marceau, I. Mtalai and D. Veilleux. Dependent Risk Models with Archimedean Copulas: A Computational Strategy Based on Common Mixtures and Applications. Insurance: Mathematics and Economics 78, 53–71 (2018).
[29]
C. Genest, J. Nešlehová and J. Ziegel. Inference in Multivariate Archimedean Copula Models. TEST 20, 223–256 (2011).
[30]
E. Di Bernardino and D. Rulliere. On Certain Transformations of Archimedean Copulas: Application to the Non-Parametric Estimation of Their Generators. Dependence Modeling 1, 1–36 (2013).
[31]
E. Di Bernardino and D. Rullière. On an Asymmetric Extension of Multivariate Archimedean Copulas Based on Quadratic Form. Dependence Modeling 4 (2016).
[32]
K. Cooray. Strictly Archimedean Copulas with Complete Association for Multivariate Dependence Based on the Clayton Family. Dependence Modeling 6, 1–18 (2018).
[33]
J. Spreeuw. Archimedean Copulas Derived from Utility Functions. Insurance: Mathematics and Economics 59, 235–242 (2014).
[34]
P. Deheuvels. La Fonction de Dépendance Empirique et Ses Propriétés. Académie Royale de Belgique. Bulletin de la Classe des Sciences 65, 274–292 (1979).
[35]
J. Segers, M. Sibuya and H. Tsukahara. The Empirical Beta Copula. Journal of Multivariate Analysis 155, 35–51 (2017).
[36]
A. Cuberos, E. Masiello and V. Maume-Deschamps. Copulas Checker-Type Approximations: Application to Quantiles Estimation of Sums of Dependent Random Variables. Communications in Statistics - Theory and Methods, 1–19 (2019).
[37]
P. Mikusiński and M. D. Taylor. Some Approximations of N-Copulas. Metrika 72, 385–414 (2010).
[38]
F. Durante, E. Foscolo, J. A. Rodríguez-Lallena and M. Úbeda-Flores. A Method for Constructing Higher-Dimensional Copulas. Statistics 46, 387–404 (2012).
[39]
F. Durante, J. Fernández Sánchez and C. Sempi. Multivariate Patchwork Copulas: A Unified Approach with Applications to Partial Comonotonicity. Insurance: Mathematics and Economics 53, 897–905 (2013).
[40]
F. Durante, J. Fernández-Sánchez, J. J. Quesada-Molina and M. Úbeda-Flores. Convergence Results for Patchwork Copulas. European Journal of Operational Research 247, 525–531 (2015).
[41]
O. Laverny. Empirical and Non-Parametric Copula Models with the Cort R Package. Journal of Open Source Software 5, 2653 (2020).
[42]
C. Genest, J. Nešlehová and N. Ben Ghorbal. Estimators Based on Kendall's Tau in Multivariate Copula Models. Australian & New Zealand Journal of Statistics 53, 157–177 (2011).
[43]
G. A. Fredricks and R. B. Nelsen. On the Relationship between Spearman's Rho and Kendall's Tau for Pairs of Continuous Random Variables. Journal of Statistical Planning and Inference 137, 2143–2150 (2007).
[44]
A. Derumigny and J.-D. Fermanian. À propos des tests de l'hypothèse simplificatrice pour les copules conditionnelles. JDS2017, 6 (2017).
[45]
M. E. Johnson. Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. Vol. 192 (John Wiley & Sons, 1987).
[46]
T. Saali, M. Mesfioui and A. Shabri. Multivariate extension of Raftery copula. Mathematics 11, 414 (2023).
[47]
F. Durante, G. Puccetti, M. Scherer and S. Vanduffel. The Vine Philosopher. Dependence Modeling 5, 256–267 (2017).
[48]
M. Hofert and M. Mächler. A Graphical Goodness-of-Fit Test for Dependence Models in Higher Dimensions. Journal of Computational and Graphical Statistics 23, 700–716 (2014).
[49]
E. Di Bernardino and D. Rullière. Distortions of Multivariate Distribution Functions and Associated Level Curves: Applications in Multivariate Risk Theory. Insurance: Mathematics and Economics 53, 190–205 (2013).
[50]
W. Zhu, K. S. Tan and C.-W. Wang. Modeling Multicountry Longevity Risk With Mortality Dependence: A Lévy Subordinated Hierarchical Archimedean Copulas Approach: Modeling Multicountry Longevity Risk with Mortality Dependence. Journal of Risk and Insurance 84, 477–493 (2017).
[51]
N. Uyttendaele. On the Estimation of Nested Archimedean Copulas: A Theoretical and an Experimental Comparison. Computational Statistics 33, 1047–1070 (2018).
[52]
R. T. Steck. Time-Varying Hierarchical Archimedean Copulas Using Adaptively Simulated Critical Values. Ph.D. Thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät (2015).
[53]
J. Górecki, M. Hofert and M. Holeňa. On Structure, Family and Parameter Estimation of Hierarchical Archimedean Copulas, arXiv:1611.09225 stat.
[54]
J. Górecki, M. Hofert and M. Holeňa. Kendall's Tau and Agglomerative Clustering for Structure Determination of Hierarchical Archimedean Copulas. Dependence Modeling 5, 75–87 (2017).
[55]
D. Müller and C. Czado. Representing Sparse Gaussian DAGs as Sparse R-vines Allowing for Non-Gaussian Dependence. Journal of Computational and Graphical Statistics 27, 334–344 (2018).
[56]
T. Nagler and C. Czado. Evading the Curse of Dimensionality in Nonparametric Density Estimation with Simplified Vine Copulas. Journal of Multivariate Analysis 151, 69–89 (2016).
[57]
T. Nagler. Nonparametric Estimation in Simplified Vine Copula Models. Ph.D. Thesis, Technische Universität München (2018).
[58]
H. Cossette, E. Marceau and I. Mtalai. Collective Risk Models with Hierarchical Archimedean Copulas. SSRN Electronic Journal (2018).
[59]
C. Czado, S. Jeske and M. Hofmann. Selection Strategies for Regular Vine Copulae. Journal de la Société Française de Statistique 154, 174–191 (2013).
[60]
B. Gräler. Modelling Skewed Spatial Random Fields through the Spatial Vine Copula. Spatial Statistics 10, 87–102 (2014).
[61]
F. Durante, G. Puccetti, M. Scherer and S. Vanduffel. The Vine Philosopher. Dependence Modeling 5, 256–267 (2017).
[62]
D. T. Müller. Selection of Sparse Vine Copulas in Ultra High Dimensions. Ph.D. Thesis, Technische Universität München (2017).
[63]
A. Derumigny and J.-D. Fermanian. A Classification Point-of-View about Conditional Kendall's Tau, arXiv:1806.09048 math, stat.