References
H. Joe. Multivariate Models and Multivariate Dependence Concepts (CRC press, 1997).
U. Cherubini, E. Luciano and W. Vecchiato. Copula Methods in Finance (John Wiley & Sons, 2004).
R. B. Nelsen. An Introduction to Copulas. 2nd ed Edition, Springer Series in Statistics (Springer, New York, 2006).
J.-F. Mai, M. Scherer and C. Czado. Simulating Copulas: Stochastic Models, Sampling Algorithms, and Applications. 2nd edition Edition, Vol. 6 of Series in Quantitative Finance (World Scientific, New Jersey, 2017).
F. Durante and C. Sempi. Principles of Copula Theory (Chapman and Hall/CRC, 2015).
C. Czado. Analyzing Dependent Data with Vine Copulas: A Practical Guide With R. Vol. 222 of Lecture Notes in Statistics (Springer International Publishing, Cham, 2019).
J. Größer and O. Okhrin. Copulae: An Overview and Recent Developments. WIREs Computational Statistics (2021).
A. Sklar. Fonctions de Repartition à n Dimension et Leurs Marges. Université Paris 8, 1–3 (1959).
T. Lux and A. Papapantoleon. Improved Fréchet-Hoeffding Bounds on
-Copulas and Applications in Model-Free Finance, arXiv:1602.08894 math, q-fin. R. Kaas, J. Dhaene, D. Vyncke, M. J. Goovaerts and M. Denuit. A Simple Geometric Proof That Comonotonic Risks Have the Convex-Largest Sum. ASTIN Bulletin: The Journal of the IAA 32, 71–80 (2002).
L. Hua and H. Joe. Multivariate Dependence Modeling Based on Comonotonic Factors. Journal of Multivariate Analysis 155, 317–333 (2017).
M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics 23, 470–472 (1952).
A. J. McNeil and J. Nešlehová. Multivariate Archimedean Copulas, d -Monotone Functions and L1 -Norm Symmetric Distributions. The Annals of Statistics 37, 3059–3097 (2009).
J. Behboodian, A. Dolati and M. Úbeda-Flores. A multivariate version of Gini's rank association coefficient. Statistical Papers 48, 295–304 (2007).
J. Ma and Z. Sun. Mutual information is copula entropy. Tsinghua Science and Technology 16, 51–54 (2011).
C. Genest, J. Nešlehová and N. Ben Ghorbal. Estimators Based on Kendall's Tau in Multivariate Copula Models. Australian & New Zealand Journal of Statistics 53, 157–177 (2011).
G. A. Fredricks and R. B. Nelsen. On the Relationship between Spearman's Rho and Kendall's Tau for Pairs of Continuous Random Variables. Journal of Statistical Planning and Inference 137, 2143–2150 (2007).
A. Derumigny and J.-D. Fermanian. À propos des tests de l'hypothèse simplificatrice pour les copules conditionnelles. JDS2017, 6 (2017).
R. Schmidt and U. Stadtmüller. Non-parametric estimation of tail dependence. Scandinavian journal of statistics 33, 307–335 (2006).
G. Frahm, M. Junker and A. Szimayer. Elliptical Copulas: Applicability and Limitations. Statistics & Probability Letters 63, 275–286 (2003).
E. Gómez, M. A. Gómez-villegas and J. M. Marín. A Survey on Continuous Elliptical Vector Distributions. Revista Matemática Complutense 16, 345–361 (2003).
M.-P. Côté and C. Genest. Dependence in a Background Risk Model. Journal of Multivariate Analysis 172, 28–46 (2019).
G. Elidan. Copulas in Machine Learning. In: Copulae in Mathematical and Quantitative Finance, Vol. 213, edited by P. Jaworski, F. Durante and W. K. Härdle (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013); pp. 39–60.
J. Friedman, T. Hastie and R. Tibshirani. Applications of the Lasso and Grouped Lasso to the Estimation of Sparse Graphical Models (Technical report, Stanford University, 2010).
D. Müller and C. Czado. Dependence Modelling in Ultra High Dimensions with Vine Copulas and the Graphical Lasso. Computational Statistics & Data Analysis 137, 211–232 (2019).
A. Derumigny and J.-D. Fermanian. Identifiability and Estimation of Meta-Elliptical Copula Generators. Journal of Multivariate Analysis, 104962 (2022).
R. E. Williamson. On multiply monotone functions and their laplace transforms (Mathematics Division, Office of Scientific Research, US Air Force, 1955).
A. J. McNeil. Sampling Nested Archimedean Copulas. Journal of Statistical Computation and Simulation 78, 567–581 (2008).
M. Hofert, M. Mächler and A. J. McNeil. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la Société Française de Statistique 154, 25–63 (2013).
M. Hofert. Sampling Nested Archimedean Copulas with Applications to CDO Pricing. Ph.D. Thesis, Universität Ulm (2010).
M. Hofert and D. Pham. Densities of Nested Archimedean Copulas. Journal of Multivariate Analysis 118, 37–52 (2013).
A. J. McNeil and J. Nešlehová. From Archimedean to Liouville Copulas. Journal of Multivariate Analysis 101, 1772–1790 (2010).
H. Cossette, S.-P. Gadoury, E. Marceau and I. Mtalai. Hierarchical Archimedean Copulas through Multivariate Compound Distributions. Insurance: Mathematics and Economics 76, 1–13 (2017).
H. Cossette, E. Marceau, I. Mtalai and D. Veilleux. Dependent Risk Models with Archimedean Copulas: A Computational Strategy Based on Common Mixtures and Applications. Insurance: Mathematics and Economics 78, 53–71 (2018).
C. Genest, J. Nešlehová and J. Ziegel. Inference in Multivariate Archimedean Copula Models. TEST 20, 223–256 (2011).
E. Di Bernardino and D. Rulliere. On Certain Transformations of Archimedean Copulas: Application to the Non-Parametric Estimation of Their Generators. Dependence Modeling 1, 1–36 (2013).
E. Di Bernardino and D. Rullière. On an Asymmetric Extension of Multivariate Archimedean Copulas Based on Quadratic Form. Dependence Modeling 4 (2016).
K. Cooray. Strictly Archimedean Copulas with Complete Association for Multivariate Dependence Based on the Clayton Family. Dependence Modeling 6, 1–18 (2018).
J. Spreeuw. Archimedean Copulas Derived from Utility Functions. Insurance: Mathematics and Economics 59, 235–242 (2014).
A. J. McNeil and J. Nešlehová. Multivariate Archimedean copulas,
-monotone functions and -norm symmetric distributions. Annals of Statistics 37, 3059–3097 (2009). R. E. Williamson. Multiply monotone functions and their Laplace transforms. Duke Mathematical Journal 23, 189–207 (1956).
G. Gudendorf and J. Segers. Extreme-value copulas. In: Copula Theory and Its Applications: Proceedings of the Workshop Held in Warsaw, 25-26 September 2009 (Springer, 2010); pp. 127–145.
K. Ghoudi, A. Khoudraji and E. L.-P. Rivest. Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Canadian Journal of Statistics 26, 187–197 (1998).
P. Deheuvels. On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statistics & Probability Letters 12, 429–439 (1991).
J.-F. Mai and M. Scherer. Financial engineering with copulas explained (Springer, 2014).
H. Joe. Families of min-stable multivariate exponential and multivariate extreme value distributions. Statistics & probability letters 9, 75–81 (1990).
J. A. Tawn. Bivariate extreme value theory: models and estimation. Biometrika 75, 397–415 (1988).
J.-F. Mai and M. Scherer. Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes 14, 311–324 (2011).
J.-F. Mai and M. Scherer. Simulating copulas: stochastic models, sampling algorithms, and applications. Vol. 4 (World Scientific, 2012).
J. Galambos. Order statistics of samples from multivariate distributions. Journal of the American Statistical Association 70, 674–680 (1975).
J. Hüsler and R.-D. Reiss. Maxima of normal random vectors: between independence and complete dependence. Statistics & Probability Letters 7, 283–286 (1989).
A. K. Nikoloulopoulos, H. Joe and H. Li. Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009).
P. Capéraà, A.-L. Fougères and C. Genest. Bivariate distributions with given extreme value attractor. Journal of Multivariate Analysis 72, 30–49 (2000).
A. Charpentier, A.-L. Fougères, C. Genest and J. Nešlehová. Multivariate archimax copulas. Journal of Multivariate Analysis 126, 118–136 (2014).
P. Deheuvels. La Fonction de Dépendance Empirique et Ses Propriétés. Académie Royale de Belgique. Bulletin de la Classe des Sciences 65, 274–292 (1979).
J. Segers, M. Sibuya and H. Tsukahara. The Empirical Beta Copula. Journal of Multivariate Analysis 155, 35–51 (2017).
J. Segers, M. Sibuya and H. Tsukahara. The empirical beta copula. Journal of Multivariate Analysis 155, 35–51 (2017).
A. Sancetta and S. Satchell. The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric theory 20, 535–562 (2004).
A. Cuberos, E. Masiello and V. Maume-Deschamps. Copulas Checker-Type Approximations: Application to Quantiles Estimation of Sums of Dependent Random Variables. Communications in Statistics - Theory and Methods, 1–19 (2019).
P. Mikusiński and M. D. Taylor. Some Approximations of N-Copulas. Metrika 72, 385–414 (2010).
F. Durante, E. Foscolo, J. A. Rodríguez-Lallena and M. Úbeda-Flores. A Method for Constructing Higher-Dimensional Copulas. Statistics 46, 387–404 (2012).
F. Durante, J. Fernández Sánchez and C. Sempi. Multivariate Patchwork Copulas: A Unified Approach with Applications to Partial Comonotonicity. Insurance: Mathematics and Economics 53, 897–905 (2013).
F. Durante, J. Fernández-Sánchez, J. J. Quesada-Molina and M. Úbeda-Flores. Convergence Results for Patchwork Copulas. European Journal of Operational Research 247, 525–531 (2015).
O. Laverny. Empirical and Non-Parametric Copula Models with the Cort R Package. Journal of Open Source Software 5, 2653 (2020).
F. Durante, G. Puccetti, M. Scherer and S. Vanduffel. The Vine Philosopher. Dependence Modeling 5, 256–267 (2017).
T. Nagler and C. Czado. Evading the Curse of Dimensionality in Nonparametric Density Estimation with Simplified Vine Copulas. Journal of Multivariate Analysis 151, 69–89 (2016).
T. Nagler. Nonparametric Estimation in Simplified Vine Copula Models. Ph.D. Thesis, Technische Universität München (2018).
C. Czado, S. Jeske and M. Hofmann. Selection Strategies for Regular Vine Copulae. Journal de la Société Française de Statistique 154, 174–191 (2013).
B. Gräler. Modelling Skewed Spatial Random Fields through the Spatial Vine Copula. Spatial Statistics 10, 87–102 (2014).
M. E. Johnson. Multivariate statistical simulation: A guide to selecting and generating continuous multivariate distributions. Vol. 192 (John Wiley & Sons, 1987).
C. Blier-Wong, H. Cossette and E. Marceau. Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics & Data Analysis 173, 107506 (2022).
T. Saali, M. Mesfioui and A. Shabri. Multivariate extension of Raftery copula. Mathematics 11, 414 (2023).
A. J. McNeil, R. Frey and P. Embrechts. Estimation of copula models. Quantitative Risk Management: Concepts, Techniques and Tools, 235–284 (2008).
M. Hofert and A. J. McNeil. Nesting Archimedean copulas. Statistica Sinica 22, 441–477 (2012).
C. Genest, K. Ghoudi and L.-P. Rivest. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82, 543–552 (1995).
C. Genest and L.-P. Rivest. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association 88, 1034–1043 (1993).
M. Michaelides, H. Cossette and M. Pigeon. A non-parametric estimator for Archimedean copulas under flexible censoring scenarios and an application to claims reserving, arXiv preprint arXiv:2401.07724 (2024).
F. Durante, G. Puccetti, M. Scherer and S. Vanduffel. The Vine Philosopher. Dependence Modeling 5, 256–267 (2017).
M. Hofert and M. Mächler. A Graphical Goodness-of-Fit Test for Dependence Models in Higher Dimensions. Journal of Computational and Graphical Statistics 23, 700–716 (2014).
E. Di Bernardino and D. Rullière. Distortions of Multivariate Distribution Functions and Associated Level Curves: Applications in Multivariate Risk Theory. Insurance: Mathematics and Economics 53, 190–205 (2013).
W. Zhu, K. S. Tan and C.-W. Wang. Modeling Multicountry Longevity Risk With Mortality Dependence: A Lévy Subordinated Hierarchical Archimedean Copulas Approach: Modeling Multicountry Longevity Risk with Mortality Dependence. Journal of Risk and Insurance 84, 477–493 (2017).
N. Uyttendaele. On the Estimation of Nested Archimedean Copulas: A Theoretical and an Experimental Comparison. Computational Statistics 33, 1047–1070 (2018).
R. T. Steck. Time-Varying Hierarchical Archimedean Copulas Using Adaptively Simulated Critical Values. Ph.D. Thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät (2015).
J. Górecki, M. Hofert and M. Holeňa. On Structure, Family and Parameter Estimation of Hierarchical Archimedean Copulas, arXiv:1611.09225 stat.
J. Górecki, M. Hofert and M. Holeňa. Kendall's Tau and Agglomerative Clustering for Structure Determination of Hierarchical Archimedean Copulas. Dependence Modeling 5, 75–87 (2017).
D. Müller and C. Czado. Representing Sparse Gaussian DAGs as Sparse R-vines Allowing for Non-Gaussian Dependence. Journal of Computational and Graphical Statistics 27, 334–344 (2018).
H. Cossette, E. Marceau and I. Mtalai. Collective Risk Models with Hierarchical Archimedean Copulas. SSRN Electronic Journal (2018).
D. T. Müller. Selection of Sparse Vine Copulas in Ultra High Dimensions. Ph.D. Thesis, Technische Universität München (2017).
A. Derumigny and J.-D. Fermanian. A Classification Point-of-View about Conditional Kendall's Tau, arXiv:1806.09048 math, stat.
H.-B. Fang, K.-T. Fang and S. Kotz. The meta-elliptical distributions with given marginals. Journal of multivariate analysis 82, 1–16 (2002).
F. Lindskog, A. McNeil and U. Schmock. Kendall’s tau for elliptical distributions. In: Credit risk: Measurement, evaluation and management (Springer, 2003); pp. 149–156.
P. Ressel. A multivariate version of Williamson’s theorem,
-symmetric survival functions, and generalized Archimedean copulas. Dependence Modeling 6, 356–368 (2018). G. Gudendorf and J. Segers. Nonparametric estimation of an extreme-value copula in arbitrary dimensions. Journal of multivariate analysis 102, 37–47 (2011).
P. Capéraà, A.-L. Fougères and C. Genest. A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 567–577 (1997).
A. Cuberos, E. Masiello and V. Maume-Deschamps. Copulas checker-type approximations: application to quantiles estimation of aggregated variables. Communications in Statistics-Theory and Methods (2019).
C. Genest, J. G. Nešlehová and B. Rémillard. Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis 159, 82–110 (2017).
F. Durante, J. F. Sánchez and C. Sempi. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insurance: Mathematics and Economics 53, 897–905 (2013).
L. Kozachenko. Sample estimate of the entropy of a random vector. Probl. Pered. Inform. 23, 9 (1987).